Inhibition and stimulation of K+ transport across the frog erythrocyte membrane by furosemide, DIOA, DIDS and quinine.
نویسندگان
چکیده
Frog erythrocytes were incubated in iso- or hypotonic media containing 10 mmol/l Rb+ and 0.1 mmol/l ouabain and both Rb+ uptake and K+ loss were measured simultaneously. Rb+ uptake by frog red cells in iso- and hypotonic media was reduced by 30-60% in the presence of 0.01-0.1 mmol/l [(dihydroindenyl)oxy] alkanoic acid (DIOA) or 0.5-1.0 mmol/l furosemide. Furosemide inhibited K+ loss from frog erythrocytes incubated in hypotonic media but did not affect it in isotonic media. DIOA at a concentration of 0.05 mmol/l inhibited of K+ loss from frog erythrocytes in both iso- and hypotonic media. At the concentrations of 0.01 and 0.02 mmol/l DIOA significantly suppressed K+ loss in a K+-free chloride medium but not in a K+-free nitrate medium. The Cl(-)-dependent K+ loss was completely blocked at a concentration of 0.1 mmol/l DIOA and the concentration required for 50% inhibition of K-Cl cotransport was approximately 0.015 mmol/l. However, the inhibitory effect of DIOA on K-Cl cotransport was masked by an opposite stimulatory effect on K+ transport which was also observed in nitrate medium. Quinine in a concentration of 0.2-1.0 mmol/l was able to inhibit Rb+ uptake and K+ loss only in hypotonic media. In isotonic media, quinine produced a stimulation of Rb+ uptake and K+ loss. A three to five-fold activation of Rb+ uptake and K+ loss was consistently observed in frog erythrocytes treated with 0.05-0.2 mmol/l 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS). In contrast, another stilbene derivative 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulphonic acid (SITS) had no effect on K+ transport in the cells. Thus, of these drugs tested in the present study only DIOA at low concentrations may be considered as a selective blocker of the K-Cl cotransporter in the frog red blood cells.
منابع مشابه
Chloride transport in red blood cells of lamprey lampetra fluviatilis: evidence for a novel anion-exchange system
The existence of a furosemide-sensitive Cl- transport pathway activated by external Ca2+ and Mg2+ has been demonstrated previously in studies of Cl- influx across the lamprey erythrocyte membrane. The aim of the present study was to characterize further specific Cl- transport pathways, especially those involved in Cl- efflux, in the red blood cell membrane of Lampetra fluviatilis. Cl- efflux wa...
متن کاملBasolateral membrane Cl(-)-, Na(+)-, and K(+)-coupled base transport mechanisms in rat MTALH.
Mechanisms involved in basolateral HCO transport were examined in the in vitro microperfused rat medullary thick ascending limb of Henle (MTALH) by microfluorometric monitoring of cell pH. Removing peritubular Cl(-) induced a cellular alkalinization that was inhibited in the presence of peritubular 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) and blunted in the absence of external CO...
متن کاملStudies of Human HbAA Erythrocyte Osmotic Fragility Index of Non-Malarious Blood in the Presence of Five Anti-malarial Drugs
Background: The capacity of human HbAA erythrocytes of non-malarious blood to withstand osmotic stress in the presence of five antimalarial drugs, Chloroquine phosphate, Quinine, FansidarTM, CoartemTM and HalfanTM was studied in vitro. Materials and Methods: Aqueous solutions of four increasing concentrations of the drugs used in this investigation were in the order: 0.2%, 0.4%, 0.6% and 0.8% (...
متن کاملیافته های تازه درباره سلولهای پاریتال معده
During the last five years the recognition of ionic channels in the parietal cells of stomach and acid chloride mechanisms of secretion by these cells has become totally clear by the "Patch Oamp" technique. The apical cytoplasm in the oxyntic cells are in the form of vesicles where membranes contain H+, K+ -ATPase pump. Stimulation causes fusion of these tubular vesicles with the cell membran o...
متن کاملAn anion binding site that regulates the glutamate transporter of synaptic vesicles.
Glutamate, the major excitatory neurotransmitter of the mammalian central nervous system, is stored in synaptic vesicles and released by exocytosis upon depolarization of the presynaptic nerve terminal. Synaptic vesicles possess an active glutamate-specific transporter that is driven by an electrochemical proton gradient across the vesicle membrane and requires chloride for maximal activity. In...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- General physiology and biophysics
دوره 18 3 شماره
صفحات -
تاریخ انتشار 1999